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Abstract

1. Dynamic food web models describe how species abundances change over time as a function

of trophic and life–history parameters. They are essential to predicting the response of ecosys-

tems to perturbations. However, they are notoriously difficult to parameterise, so that most

models rely heavily either on allometric scaling of parameters or inverse estimation of biomass

flows. The allometric approach makes species of comparable body mass have near–identical

parameters which can generate extinctions within a trophic level. The biomass flow approach

is more precise, but is restricted to steady–states, which is not appropriate for time–varying

environments.

2. Adequately parameterising large food webs of temperate and arctic environments requires

dealing both with many species of similar sizes and a strongly seasonal environment. Inspired by

the rich empirical knowledge on the vertebrate food web of the Bia lowieża forest, we parameterise

a bipartite food web model comprising 21 predators and 124 prey species. Our model is a non–

autonomous coupled ODE (Ordinary Differential Equations) system that allows for seasonality

in life–history and predation parameters.

3. Birth and death rates, seasonal descriptions of diet for each species, food requirements

and biomass information are combined into a seasonal parameterisation of a dynamic food

web model. Food web seasonality is implemented with time–varying intrinsic growth rate and

interaction parameters, while predation is modelled with both type I and type II functional

responses.

4. All our model variants allow for >80 % persistence in spite of massive apparent compe-

tition, and a quantitative match to observed (seasonal) biomasses. We also identify trade–offs

between maximising persistence, reproducing observed biomasses, and ensuring model robust-

ness to sampling errors. Although multi–annual cycles are expected with type II functional

responses, they are here prevented by a strong predator self–regulation. We discuss these re-

sults and possible improvements of the model.
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5. We provide a general workflow to parameterise dynamic food web models in seasonal

environments, based on a real case study. This may help to better predict how biodiverse food

webs respond to changing environments.

Keywords: bipartite food web; Bia lowieża forest; seasonality; parameterisation; predator–prey

dynamics; Lotka–Volterra model; periodic forcing.

1 Introduction

Model parameterisation is fundamental to ensure prediction accuracy of population dynamics (be

the prediction qualitative or quantitative). Even simple models of predator–prey dynamics, mod-

elling transfers of biomass from the prey to the predator alongside prey intrinsic growth and preda-

tor mortality, are quite challenging to parameterise. This is partly because model outcomes can

be quite sensitive to the value of the parameters themselves. For instance, in the Rosenzweig–

MacArthur model describing a two–dimensional predator–prey community, already 5 parameters

interact in determining the dynamical behaviour of the community (Bazykin, 1998). Options to

tackle this “plague of parameters” (as coined by Yodzis & Innes, 1992) range from randomly sam-

pling the parameter space, which provides little predictive power, to a detailed accounting of each

process rate, which is very demanding in empirical data on the modelled ecosystem (e.g., Hanski &

Korpimäki, 1995; Turchin & Hanski, 1997; Gilg et al., 2003). Sometimes, despite the best efforts

of the research community, some of the parameters still have to be “guesstimated”. An alternative

approach, pioneered by Yodzis & Innes (1992), relies on scaling model parameters as a function of

species body masses and metabolic types, which considerably reduces the amount of empirical data

necessary to mimic realistic systems (see also Weitz & Levin, 2006, for a reframed version of the

Rosenzweig–MacArthur model).
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Moving from two–species predator–prey systems to many–species food webs considerably aggra-

vates the parameterisation challenge. Allometric scaling of parameters then offers a parsimonious,

and thus tractable, solution to this challenge (Williams et al., 2007; Hudson & Reuman, 2013). Al-

lometric scaling of food webs has been successful in explaining species coexistence and community

stability (e.g., Brose et al., 2006; Kartascheff et al., 2010) and in predicting the strength of trophic

cascades (from predators to resources) as a function of predator body size (e.g., Schneider et al.,

2012; DeLong et al., 2015). With practical applications in mind, allometric trophic network models

have the potential to reproduce the dynamics of food webs with about a dozen of compartments

observed in time–varying environments (e.g., Boit et al., 2012; Curtsdotter et al., 2019). However,

turning to even larger food webs, where many species can have the same body mass, highlights an

issue with the allometric approach: by construction, predation on two species or compartements

with similar body masses will be parameterised alike. Consequently, if there are many species with

similar body masses, and they share similar food sources or predators, they will tend to exclude

each other out in Lotka–Volterra or similar systems. Tuning the strength of trophic relationship

with other traits (e.g., species mobility, Brose et al., 2019) or prey availability (e.g., Kalinkat et al.,

2011; Quévreux & Brose, 2019) could help to avoid this outcome, but at the cost of increased data

requirements.

The popular, empirically–driven alternative to purely–allometric parameterisations uses an esti-

mated biomass flow approach (Ulanowicz & Kay, 1991; Christensen & Pauly, 1992; de Ruiter

et al., 1995). In the biomass flow approach, one quantifies the amount of biomass transiting be-

tween compartements of the modelled ecosystem, as well as exchanges with the outside world (mi-

gration, harvesting). However, biomass flow approaches rely on the assumption of mass–balance (or

energy–balance) within each compartment (Gauzens et al., 2019). Although enabling parameter

4



estimation, this working hypothesis is somewhat problematic to model time–varying ecosystems,

such as strongly seasonal ecosystems. Not only seasonal ecosystems have rates of change where

biomass gains do not always equilibrate with losses, but the very existence of the seasonal forcing

may induce dynamics much more complex than a single equilibrium point (Rinaldi et al., 1993;

Taylor et al., 2013). For that reason, empirically–based food web studies on time–varying environ-

ments using a steady–state assumption usually reduce their system to a succession of steady–states,

each corresponding to a given time slice, be it the year (e.g., Legagneux et al., 2012; Chevillot et al.,

2019) or the season (e.g., Saavedra et al., 2016). The main limitation of this “succession trick” is

that the dynamics of each time slice are considered to be independent.

Here, we use a modelling philosophy similar to that of studies which parameterised seasonal

predator–prey systems with two to four species (e.g., Hanski & Korpimäki, 1995; Turchin & Hanski,

1997; Gilg et al., 2003), using a mixture of seasonal life–history data, some allometric relationships,

and attack rates reconstructed from seasonal empirical data. However, we apply this approach

to a much larger seasonal food web, the terrestrial vertebrate food web of the Bia lowieża for-

est (Jȩdrzejewska & Jȩdrzejewski, 1998). By focusing on the Bia lowieża forest as a case study,

we benefit from a decade of detailed monitoring on a diverse multitrophic community, describing

intra–annual variations of species densities and seasonal predator diets. Essentially, we generalise

classic seasonal predator–prey models with time–dependent parameters to food webs. This could

be construed as a blend between the theoretically–driven allometric/life–history approaches and

the empirically–driven biomass flow approaches. We specify a parametrisation workflow for both

type I and type II functional responses of predators, and two different ways of estimating predator

regulation. In the following, we first describe how the network changes from winter to summer in

the Bia lowieża forest, and in a second step, we parameterise the dynamical food web model based
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on the data compiled in Jȩdrzejewska & Jȩdrzejewski (1998)’s monograph. We then simulate the

dynamics of the different versions of the model food web and finally confront model outcomes to the

observed data, using multiple diagnostics (species biomasses, winter–to–summer transition, species

abundance curves).

2 The seasonal predator–prey community of the Bia lowieża forest

We chose the food web of the Bia lowieża forest (Poland and Belarus) as an inspiration for our

study. Our reasons are three–fold. First, the structural stability approach for separated seasons of

Saavedra et al. (2016), applied to the Bia lowieża forest, motivated us to investigate the dynamics of

this ecosystem under seasonal forcing, rather than steady–state per season. Second, there is ample

additional biological information due to extensive monitoring (Jȩdrzejewska & Jȩdrzejewski, 1998).

This creates opportunities to shift from theoretical analyses, assuming only feasibility of stable fixed

points, to fully parameterised models that better represent the actual set of life–history constraints

on that community. Third, this ecosystem is characterised by a continental climate with marked

differences between summer and winter processes, which can produce complex dynamics (Rinaldi

et al., 1993; Turchin & Hanski, 1997). For a detailed description of the Bia lowieża forest, with an

impressive description of the data gathered over the years, we refer the reader to Jȩdrzejewska &

Jȩdrzejewski (1998)’s authoritative book.

The food web, combining data collected between 1985 and 1996 in the Polish part of the Bia lowieża

forest, is composed by 142 taxa: 77 birds, 41 mammals, 14 fishes, 6 amphibians, 3 reptiles, and

1 crustacean. We also consider 3 additional groups (carcasses, earth worms, and Hymenoptera)

which represent substantial resources to some predators. In total, the food web describes 501

trophic relationships between 21 predators and 124 food sources.
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One can consider two distinct time slices for this food web: one for summer (from 16th April to 30th

September, i.e. 168 days), and one for winter (from 1st October to 15th April, i.e. 197 days). These

two broadly defined seasons differ in two ways: species composition (due to species migration and

dormancy), and interaction composition (due to predator dietary shifts following prey availability).

Eventually, summer and winter share 17 predators, 72 food sources, and 235 trophic interactions.

The food web is overall more diverse and the number of interactions higher during summer (136

species, 441 interactions) than during winter (101 species, 292 interactions).

2.1 Estimation of predators’ intakes of prey

In their comprehensive book, Jȩdrzejewska & Jȩdrzejewski (1998) provide substantial information

about predation in the Bia lowieża forest. The empirical data compiled in this monograph cover

predator diets for the two broad seasons we defined above, and enable us to estimate predator

intakes for each season. Diet compositions are based on the analysis of predators’ pellets and

scats which then provide effective biomass proportions of prey items in each predatory species diet.

Herein, we calculate predator intakes of each prey group to eventually estimate the direct impact

of each pairwise predatory link in the food web during an average year.

Hereafter, Gki denotes the intake of prey species k by an individual predator i over an average year

(in g.N-1). Basing our calculation on the physiological needs of predators (following Jȩdrzejewska

& Jȩdrzejewski, 1998), we calculate the annual intake of prey k by one predator i as:

Gki ' (DFI )i ×
(
ωSki × (ndays)

S
i + ωWki × (ndays)

W
i

)
(1)

where (DFI )i is the daily food intake of predator i (in mass per day per individual), and ωSki

and ωWki the biomass fractions of prey k in predator i’s diet during summer and winter respectively.
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(ndays)
S
i and (ndays)

W
i are the number of days of predator i’s presence in the Bia lowieża forest during

summer and winter respectively. Recovering seasonal intakes GSki and GWki is done by considering

season–specific terms in eq. 1 to estimate each.

Data on predator diets suggest multiple links to other predator species, which were ignored in the

bipartite food web presented in the previous modelling of the Bia lowieża forest by Saavedra et al.

(2016, using structural approaches without paramerisation). Identifying whether these predator–

predator links correspond to active hunting, interference or scavenging is not possible with this type

of data (Jȩdrzejewska & Jȩdrzejewski, 1998). We thus chose to focus on trophic links between two

trophic levels (as in Saavedra et al., 2016). The resulting seasonal food web is displayed in Fig. 1.
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Figure 1: The food web in the Bia lowieża forest during summer and winter. Upper boxes correspond to
predators, and lower boxes to prey species. Colours match species groups, and edge widths are proportional
to the quantity eaten by each predator population on each prey population (in g.ha-1) during each season.
The size of upper boxes is proportional to the predator’s total removal of prey, and the size of lower boxes is
proportional to the amount of prey eaten by all predator species combined. We do not represent interactions
involving invertebrates and carcasses for the sake of clarity, although we model quantities eaten on these
compartments.

2.2 Metrics for describing seasonal variations within food web

To better understand how food web seasonality may contribute to community dynamics, and

whether it is worth considering such extra complexity, we need to grasp how the quantitative

structure of the food web varies between seasons. Trophic links are quantified as prey biomass har-

vested by predator populations during each season. In other words, each trophic link is seasonally
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weighted with Γzki = Gzki × (Ci/Mi)z where Gzki is the per–capita intake of prey k by the predator

species i (in g.ha-1.N-1) during season z, and (Ci/Mi)z is the density of the predator i during season

z (in N.ha-1). We investigate structural changes with two questions.

Are trophic fluxes seasonal? We quantify predation seasonality with the following index for predator

j:

PS j = 1 +
∑

z∈{S,W}

(
Γz•j

ΓS•j+ΓW•j
ln

(
Γz•j

ΓS•j+ΓW•j

))
where Γz•j =

∑
h Γzhj is the quantity of prey eaten by the predator j population during season z. To

adapt this index to prey species, this quantity should be replaced with Γzj• =
∑

h Γzjh , the quantity

of prey j eaten by the predator community during season z. Values near 1 indicate highly seasonal

predation while lower values suggest more constant predation from the perspective of species j. For

predators, PS j reflects whether their hunting activity in the Bia lowieża forest is constant across

seasons. From the prey perspective, it rather translates whether they undergo constant predation

pressure.

How does predation differ between summer and winter? First, we quantify the trophic similarity

between seasons of each species j with the Jaccard index (qualitative similarity) and the Bray–Curtis

index (quantitative similarity of estimated impact Γzki on prey k). Second, we evaluate predator

generality and prey vulnerability as proportional generality (see R package bipartite; Dormann

et al., 2009) during each season z, and compare them for each species. Proportional generality is

the effective number of predators/prey eH
z
j of species j divided by the maximum potential number

of predators/prey eH
z
max . For a given season z, we calculate Hz

j and Hz
max as


Hz
j = −

∑
k

Γzkj
Γz•j

ln
(

Γzkj
Γz•j

)
Hz

max = −
∑

k
Rzk
Rz•

ln
(
Rzk
Rz•

)
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if species j is a predator. For prey species, indices are swapped, and we use predator biomass

densities Czi during season z instead of prey biomass densities Rzk (seasonal densities are available

in Supporting Information A). This method allows us to compare species generality or vulnerability

while taking into account that the amount of predators or prey varies between seasons.

2.3 Effects of seasonality on the structure of the food web of the Bia lowieża

forest

Predators (all but Asio otus and Nyctereutes procyonoides) fall into two well–identified groups:

year–round predators (with low PS i), and seasonal predators (with high PS i). Prey species show

a less clear–cut distribution as many species undergo an intermediate level of predation seasonality

(Fig. 2A). We also note that predators harvesting prey equally between seasons and prey undergoing

equal predation between seasons (in which cases PS i = 1 − ln(2) ' 0.307) are few. This is likely

due to winter lasting a longer time (197 days against 168) thereby the winter food web exhibits

more important trophic fluxes.

Many predators tend to feed on different prey between summer and winter (Fig. 2B). The Jaccard

index indicates that diet composition changes between summer and winter, although a fifth of prey

species are attacked by exactly the same set of predators. Quantifying predator intakes within each

season suggests more important changes in their diets: part of their diet composition changes (Fig.

2B, open circles), and their predation effort also tends to shift to different prey species between

summer and winter (Fig. 2B, closed circles).

Finally, prey species appear equally vulnerable during winter and summer (consistent with Wilcoxon’s

test; W = 1421, p = 0.43; Fig. 2C) while predators become more specialised during winter

(W = 114, p < 0.01, Fig. 2C).
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Figure 2: Seasonal changes of structure for the food web of the Bia lowieża forest. A) Predation seasonality
for each species (from most seasonal to least seasonal). B) Trophic similarity between summer and winter
for each species (species in decreasing order). Closed circles correspond to quantitative trophic similarity
and open circles to qualitative trophic similarity. C) Winter proportional generality (vulnerability) against
summer proportional generality (vulnerability) of each predator (prey) species i. Crossed circles represent
the mean of each trophic level. For all graphs, each symbol corresponds to one species (black: predators,
grey: prey).

3 Parametrisation of a seasonally varying food web model

3.1 Basic bipartite predator–prey model

To describe the dynamics of the predator–prey community, we use a general food web model,

inspired by the Lotka–Volterra modelling of Saavedra et al. (2016). We modified predator growth

rates by incorporating density–dependent mortality to account for the strong territoriality of species

occurring in the Bia lowieża forest. The dynamics of predator and prey biomass densities (Ci and

Rk respectively) are described as follows for an arbitrary number of species:


dCi
dt = Ci

(
−mi − giCi + e

∑
k
fki(R)
Mi

)
dRk
dt = Rk (rk − βkRk)−

∑
i
fki(R)
Mi

Ci

(2)
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where mi stands for the baseline mortality rate of predator i, gi for its density–dependent mortality

rate (self–regulation), e for the standard conversion efficiency, rk for the intrinsic growth rate of

prey k, and βk for its intra–specific competition rate (set to 1 in Saavedra et al., 2016). The term

fki(R) is the per capita consumption rate of prey k by predator i, i.e., its functional response (in

g.y-1.N-1). For the predation term of eq. (2) to have the adequate units in a biomass–based model,

dividing the per capita functional responses of the predators by their body masses Mi is required.

This model formulation is aimed at keeping the parameters of predator functional responses in their

original units to maximise reproducibility of the parameterisation process. In the present study,

we consider both type I (eq. 3a) and type II (eq. 3b) multi–species functional responses which are

respectively linear and saturating functions of prey densities:

fki(R) = γkiRk (3a)

fki(R) =
akiRk

1 + hi
∑

j ajiRj
(3b)

where γki and aki are the discovery rates of prey k by predator i, and hi the handling time assuming

it mostly depends on the predator physiological needs (Baudrot et al., 2016).

Parameters definitions and units are summerised in Table 1.
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Parameter Definition Unit

t Time y

Ci, Rk Biomasses of predator i and prey k g.ha-1

rk Intrinsic growth rate of the prey k y-1

βk Intra-specific competition rate of the prey k ha.g-1.y-1

mi Baseline mortality rate of the predator i y-1

gi Density–dependent mortality rate of the predator i ha.g-1.y-1

e Coefficient of conversion -

Mi Body mass of the predator i g.N-1

Type I functional response

γki(t) Discovery rate ha.y-1.N-1

γ̄ki Average year–round discovery rate ha.y-1.N-1

(εγ)ki Magnitude of the discovery rate fluctuations -

Type II functional response

aki(t) Discovery rate ha.y-1.N-1

āki Average year–round discovery rate ha.y-1.N-1

(εa)ki Magnitude of the discovery rate fluctuations -

1/hi Predator i’s maximum intake rate g.y-1.N-1

Table 1: Parameters of the food web model. N-1 denotes per capita predator parameters.

3.2 Parameters of predation

We first estimate predation parameters defined in eq. 2 and eq. 3 for each season based on estimates

of the per–capita intake of each prey population. Translation into time varying parameters is
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described in section 4.

In the previous section, we defined Gki , the biomass of prey k harvested by an individual predator

i over an average year (in g.N-1). It is formally defined as:

Gki =

∫ y+1

y
fki(R, t)dt (4)

where fki(R, t) is the instantaneous per capita consumption rate of prey k by the predator i in

g.y-1.N-1. In a seasonal food web model, not only prey densities vary throughout the year, but also

the parameters of the functional response. In the present work, we specifically target the discovery

rates γki and αki , and estimate their values for each season assuming they are constant within each

season. These two assumptions translate into functional responses which shift between two values,

fSki(R
S) and fWki (RW ) for summer and winter respectively. RS and RW are the vectors of prey

densities for summer and winter respectively. As the unit of these rates of intake is the gram per

year per capita, eq. 4 simplifies to

Gki = GSki +GWki ' ηSfSki(RS) + ηW fWki (RW ) (5)

when differentiating summer from winter intakes. ηS and ηW are the fractions of the year corre-

sponding to summer and winter respectively (ηS = 0.46 and ηW = 0.54 in the Bia lowieża forest).

Assuming seasonal predator intakes to be governed by a linear functional response (i.e., type I as
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in eq. 3a), eq. 5 equates to


GSki = ηS × γSki ×RSk

GWki = ηW × γWki ×RWk

⇒


γSki =

GSki
RSk
× 1

ηS

γWki =
GWki
RWk
× 1

ηW

(6)

where RSk and RWk are the biomass densities of the prey k for summer and winter respectively. A

type II functional response as described in eq. 3b features a predator population split between two

types of activities: (Ci)s are the predators searching for food, and (Ci)hk those handling prey k.

Hence, we assume the main activity of a predator population is foraging (Koen-Alonso, 2007):

Ci = (Ci)s +
∑
k

(Ci)hk (7)

Herein, we use Baudrot et al. (2016)’s approach to describe the processes underlying predation

governed by a type II functional response. αi denotes the rate of prey accessibility for predator i,

pki the preference of predator i for prey k, and hki the handling time of prey k by predator i once

killed. We hypothetise that the rate of prey accessibility αi depends on the availability of predator

i’s prey so we write it as a function of their biomass densities R = {R1, R2, ...}:

αi(R) =
∑
j

ajiRj (8)

This rate corresponds to the total amount of prey encountered by each individual predator i over

the course of a year (in g.ha-1.y-1). Similarly, we define the preference of predator i for prey k as a
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function of its relative biomass density:

pki(R) =
akiRk∑
j ajiRj

=
akiRk
αi(R)

(9)

Hence, the functional response of predator i to prey k biomass density is

fki(R) = αi(R)× pki(R)× (Ci)s
Ci

(10)

As predator reproduction happens at a slower rate than discovery and handling of prey, we assume

the portion of newly born individuals contributing to the predation of a given prey species is

marginal so that

Ci = (Ci)s

1 + hi ×
∑
j

pij (R)× αi(R)

 (11)

Whence,

fki(R) =
αi(R)× pki(R)

1 + hi × αi(R)
(12)

Replacing pki(R) with eq. 9, we retrieve the formula for type II functional response in eq. 3b. Here,

preferences pki(R) are approximated with the biomass proportions ωki prey k in predator i’s diet,

which are available for both predatory mammals’ and raptors’ diets (Jȩdrzejewska & Jȩdrzejewski,

1998). The handling times hi can be estimated by considering the asymptotic value of fki(R) when

prey are non–limiting (Rk → ∞), in which case fki(R) ∼ 1/hi. We assume that an individual

predator i can harvest slightly beyond its own physiological needs (i.e., (DFI )i × 365 per year) by

foraging as well for the juveniles of the year that it has to feed. Hence, the maximum intake of

17



food biomass is estimated as

1/ĥi =
[
(DFI )i + bi × (DFI )juvi

]
× 365⇒ ĥi =

1[
(DFI )i + bi(DFI )juvi

]
× 365

(13)

where (DFI )juvi is the daily food intake of juveniles of predator i and bi the birth rate of the predator

i (see Table B2 in Supporting Information B for estimates).

With eq. 5 in mind, we write the intake of prey k by predator i during summer as

GSki ' ηS × fSki(RS) = ηS ×
αSi (RS)× pSki(RS)

1 + hi × αSi (RS)
(14)

with a similar formula for winter intake GWki . Based on these approximations, we first estimate the

seasonal accessibility rates

αSi (RS) =
∑
k

1/ηS×GSki
1−

∑
k

1/ηS×GSki×hi

αWi (RW ) =
∑
k

1/ηW×GWki
1−

∑
k

1/ηW×GWki ×hi

(15)

it follows for all k and i

aSki =
pSki (R

S)×αSi (RS)

RSk

aWki =
pWki (RW )×αWi (RW )

RWk

(16)

18



3.3 Intrinsic growth rates of the prey

For prey intrinsic growth rates, we base our estimates on the central premise that they scale with

species body mass following the quarter power law (Savage et al., 2004):

rk ∝M
−1/4
k (17)

whereMk is the body mass of prey species k. To estimate rk, we further assume that the relationship

described by eq. 17 depends on the species group g:

rk,g = Eg ×M
−1/4
k,g (18)

where rk,g and Mk,g are the intrinsic growth rate and the body mass of species k from group g. First,

we calculate Eg for various taxonomic groups thanks to the average body mass M̄g (Supporting

Information A) and the estimates of r̄g we have for an average species of the group g (Table B1

in Supporting Information B). We calculate r̄g thanks to the estimated number Nmax of juveniles

produced by a pair of adults (Jȩdrzejewska & Jȩdrzejewski, 1998), assuming an exponential growth

R̃k(t) = R̃0 × er̂gt in an unbounded environment. Second, we estimate each rk,g based on eq. (18),

where species body masses are picked from the literature (Fig. 3A). Missing values of intrinsic

growth rates for other taxonomic groups are collected from the literature (Supporting Information

B).

3.4 Intra–specific competition rates of the prey

In the absence of predators, our model described by eq. 2 assumes a logistic growth of prey species:

at low densities, the prey growth follows their intrinsic growth rates and tapers off at higher densities
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because of intra–specific competition (each population reaches a plateau which corresponds to its

carrying capacity). In model of eq. 2, the carrying capacity of a prey population k is rk
βk

in

the absence of predation. For all prey species, we infer the intra–specific competition rate βk as

rk/(Rk)max (Fig. 3B), hence assuming that the highest biomass density recorded for a population

matches its carrying capacity (see Supporting Information A for the estimation of prey carrying

capacities).

3.5 Mortality rates of the predators

We estimate predator baseline mortality rates as the inverse of their maximum longevity Λi (in

years):

mi = 1/Λi (19)

We pick the greatest longevity values provided by the database AnAge (De Magalhães et al., 2005)

to estimate baseline mortality rates. We verify that baseline mortality scaled with species body

masses, by means of an analysis of covariance:

log(mig) ∼ m̄+ τg + α× (log(Mi,g)− log(M̄)) + εig (20)

where mig is the baseline mortality of species i in group g, m̄ the mean mortality, Mi,g the body

mass of species i of group g, and M̄ the mean species body mass. We estimate τg the effect of group

g on the baseline mortality, the size α of the body mass effect, while εig is the residual. Estimates

of baseline mortality indeed scale with body mass, with coefficient α = −0.19 (Fig. 3C).
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3.6 Density–dependent mortality of the predators

The term controlling the density–dependent mortality of the predators is key in regulating their

densities and their impact on the prey community. To make our results robust to methodological

choices regarding this parameter, we consider two alternative estimates of gi: a phenomenological

estimate based on the observations and a model–based estimate.

The phenomenological estimate (ĝi)data relies on Jȩdrzejewska & Jȩdrzejewski (1998)’s argument

that year–round average values of predator biomass densities reflect fairly well how many individuals

the Bia lowieża forest is able to support under pristine conditions. This equates to assuming constant

predator densities, whence

ri − giC̄i = 0⇒ (ĝi)data =
(r̂i)obs
C̄i

(21)

where ri = e
∑

k

fki(R̄)
Mi

−mi is the intrinsic growth rate of predator species i (in y−1, see eq. 2),

(r̂i)obs its estimate based on observational data, and C̄i is the average year–round biomass density

of predator i. We estimate ri with the observed ratio of biomasses during non–reproductive season

to post–breeding season, assuming the breeding season lasts the whole summer (i.e., (r̂i)obs =

365
168 × log

(
CAutumn
i

CSpring
i

)
).

The model–based estimate (ĝi)model uses the model structure, with the type II functional response

which implies that predation is capped, to find out the regulation that has to be exerted to maintain

a given predator density if predators ate at their maximum. This method uses as ingredients a

theoretical predator maximum intrinsic growth rate (r̂i)max and the maximum biomass density that

the predator population could reach (Ci)max . We assume that (r̂i)max is the intrinsic growth rate

resulting from the maximum per capita intake rate (limR→∞
∑

k fki (R)) and the baseline mortality
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mi. (Ci)max is arbitrarily set to
(
Ĉi

)
max

= CAutumn
i ×1.5 (e.g., juveniles of the year complete their

growth). It ensues

(ĝi)model =
limR→∞ e

∑
k fki (R)
Mi

−mi

CAutumn
i × 1.5

(22)

where limR→∞
∑

k fki (R) =
[
(DFI )i + bi × (DFI )juvi

]
× 365 = 1/hi (see eq. 13).
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Figure 3: Parameters driving intra–specific growth with log–scaled axes, and their relationships with body
mass.
(Figure caption continued on the following page.)
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Figure 3: (Continued figure caption.) A) Estimated intrinsic growth rates for prey species, where black
upward triangles are reference points used to estimate the intercept of the line describing the relationship
between rk and body masses for each group. Dashed lines indicate the relationship defined by eq. 18, with
colours matching groups to which they apply. B) Phenology of prey reproduction as modelled in eq. 2 and
eq. 23. C) Estimated intra–specific competition rates for prey species. D) Estimated baseline mortality rates
for predator species and E) estimated density–dependent mortality rates for predator species either based
on observed intrinsic growth rates (black symbols) or on maximum intakes of prey (grey symbols). In all
plots, shaded areas cover the confidence intervals of the corresponding regression lines. Symbols correspond
to species type.

4 Simulating the seasonal food web of the Bia lowieża forest

4.1 Implementing seasonality

The examination of the food web of the Bia lowieża forest highlights seasonal changes in the intakes

of prey (Fig. 1) matching seasonal reproduction, changes in prey availability, or even presence of

the predator in the study area (Jȩdrzejewska & Jȩdrzejewski, 1998; Humphries et al., 2017). We

implement predation seasonality by exerting a periodic forcing on the discovery rates – i.e., γki and

aki , so they are now time–dependent.

In the previous section, for a given parameter χki(t) shaping predation in our model, we actually

estimate fixed rates χSki and χWki for summer and winter respectively. Following classic models of

seasonal communities (Rinaldi et al., 1993), we assume that any time–varying parameter χ(t) can

be decomposed into a mean value and a sinusoidal component:

χ(t) =


χ̄ (1 + εχ × sin(2πt)) if highest during summer

χ̄ (1 + εχ × sin(2πt+ π)) if highest during winter

(23)

where χ̄ is the average year–round parameter (γ̄ for discovery rates; ā for attack rates), and εχ is the

relative magnitude of the parameter fluctuations (Table 1). This dimensionless parameter ranges
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from 0 – for constant discovery rates (i.e., χ(t) = χ̄ for all t), to 1 – for interactions occurring mainly

during a single season. Intermediate values of εχ allow predation to fluctuate between seasons, and

are intended to reflect changes in predatory behaviours over the course of the year.

To infer χ̄ki and (εχ)ki , we assume χSki and χWki corresponds to the extremes values between which

χki(t) fluctuates over the course of the year. Given the periodicity of our forcing signal, mean rates

are

χ̄ki =
χWki + χSki

2
(24)

and the forcing magnitude

(εχ)ki =
|χWki − χSki |
χWki + χSki

(25)

which simplifies to 1 if the predation link happens only during one season.

As seasonal reproduction is a pronounced feature of terrestrial temperate communities, we assume

prey species reproduce mostly during summer. This is modelled by exerting a seasonal forcing

on prey intrinsic–growth rates rk so it reaches its greatest value during summer (i.e., rk(t) =

r̄k (1 + sin (2πt)), where r̄k = r̂k, Fig. 3B).

4.2 Modelling scavenging and predation on invertebrates

In the Bia lowieża forest, predators may feed on a wide spectrum of resources, including plant

material, invertebrates, and domestic animals. In the present model, we ignore most of these

buffering resources to avoid unrealistic predator overpopulation, except when they constitute a

substantial share of a predator’s diet (>10% biomass). This includes earthworms for badgers
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(Meles meles), Hymenoptera for honey buzzards (Pernis apivorus), and carcasses for red foxes

(Vulpes vulpes) and raccoon dogs (Nyctereutes procyonoides). The dynamics of these resources are

likely to be very different from the rest of the community, as they operate at different time scales.

Hereafter, we consider these food sources to be comparatively constant, so that the predator per

capita intakes on these only vary with other prey species whose dynamics are effectively modelled

by eq. 2.

To ensure full reproducibility of the present model, we modify eq. 2 to include constant food sources.

Hereafter, Ai denotes the set of constant feeding resources of predator i so that
∑

k∈Ai
f̃ki(R, t) is

the instantaneous per–capita intake of constant feeding resources by the predator species i. The

equation for predator dynamics now writes as

dCi
dt

= Ci

−mi − giCi + e
∑
k/∈Ai

fki(R, t)

Mi
+ e

∑
k∈Ai

f̃ki(R, t)

Mi

 (26)

We now specify f̃ki(R, t) so that eq. 3a and 3b become, for constant food sources,

f̃ki(R, t) = γ̃ki(t) (27a)

f̃ki(R, t) =
ãki(t)

1 + hi

(∑
j /∈Ai

aji(t)Rj(t) +
∑

j∈Ai
ãki(t)

) (27b)

where α̃ki(t) and γ̃ki(t) correspond to the amount of food resource k that can be eaten per year by

one predator i (in g.y-1) for type I and type II functional responses. We then estimate the annual

range for α̃ki and γ̃ki . For summer, the extrema are
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
γ̃Ski =

Gski
ηS

α̃Ski = pSki(R̄)× αSi (R̄)

The formula are the same for winter but with different superscripts. Finally, the average values

and the forcing magnitudes of α̃ki(t) and γ̃ki(t) are calculated following eq. 24 and 25.

4.3 Numerical integration

We simulate the dynamics of the above–described food web model with our estimated parameter

values. Simulations are initiated with the spring biomass densities reported from field studies, and

run for 100 years. The system is numerically integrated with Matlab 2017b (The MathWorks Inc.,

Natick, Massachusetts, USA), using the function ode45 for numerical integration, with relative

tolerance and absolute tolerance respectively set at 10−6 and 10−6. We set a biomass density

threshold at 10−6 g.ha-1 (i.e., less than 1 g in the whole study area) below which a species is

considered to be extinct.

All input parameters are given in Supporting Information C.

5 Results from the simulations

All simulations reach asymptotic dynamics within a few years of numerical integration (see the

grey parts of the trajectories displayed in the phase portraits in Fig. 4). The simulations of our

food web model for the Bia lowieża forest result in high level of species persistence (at least 78% of

modelled species surviving), with all predators maintaining over the 100 years (Fig. 4). Greater

predator density–dependent mortalities (ĝi based on observed growth during the breeding period,
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as in eq. 21) yields logically greater prey persistence. A predator intake dependent on prey density

(type II functional response) decreases prey persistence (Fig. 4C–D), a somewhat surprising result,

since predator intake is capped and in all other respects, the dynamics are similar to those with the

type I response. As most extinctions occur in the early stages of the simulations (see black crosses

on phase portraits of Fig. 4), these differences in persistence between variants of the model are not

a mere result of the reduction of the speed at which species reach their extinction threshold.

All asymptotic dynamics are annual cycles. Both the type of functional responses and the method

for estimating gi slightly modify the attractor shape (the set of biomasses densities produced by the

simulations after transient dynamics), moving it to lower predator biomass densities and relatively

smaller fluctuations for a type II response.

All the above results remain robust to varying initial conditions (Supporting Information D). We

also found that marginal to moderate alterations of empirical abundance data ahead of the pa-

rameterisation had virtually no effect on community persistence (Supporting Information E). Yet,

increasing or decreasing empirical abundance data ahead of the parameterisation of discovery rates

can slightly modify the attractors (but not their overall shape and periodicities). Finally, model

outcomes are more sensitive to the empirical abundance data of the most–studied groups (Fig. E3

and E4 in Supporting Information E), which may be simply the result of their larger contribution

to trophic fluxes (Fig. E7).
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Figure 4: Simulated dynamics of the parameterised food web model for the forest of Bia lowieża displayed
as phase portraits of densities aggregated by trophic level (in g.ha-1) and time series covering the last 10
years of simulation. Phase portraits represent the sum of predator densities

∑
i Ci against the sum of prey

densities
∑
k Rk, with transient dynamics in grey and asymptotic dynamics in black. Species extinctions are

indicated with black crosses. In time series, each line corresponds to one species density over time, with prey
taxa in grey and predators in black. For all simulations, the seasonal forcing is sinusoidal, and two types of
functional responses are modelled: A–B) type I functional response; C–D) type II functional response. The
predator density–dependent mortality is estimated either with eq. 22 (A and C), or with eq. 21 (B and D).

Our simulations reproduce observed densities at different seasons (spring, summer, autumn) with

an error inferior to one order of magnitude for most species (and often much below, Fig. 5 and

Supporting Information F). Exceptions are species for which we have little (reptiles and common

mammals such as Lepus europaeus and Sciurus vulgaris) to no (fish community) empirical data
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on their seasonal biomasses. Note that errors are generally the largest for species with biomasses

below 10 g.ha-1: abundant species are almost all well–modelled.

Figure 5: Comparison between observed
{
CObs
i , RObs

k

}
and simulated densities

{
CSim
i , RSim

k

}
for autumn

(orange symbols, only for predators), summer (black symbols, only for prey species) and spring (green
symbols). Note that axes are log–transformed. Comparison is drawn for type I (A–B) and type II (C–D)
functional responses, as well as for two types of estimates for predator density–dependent mortality (A–C
for gi according to eq. 22 and B–D when based on eq. 21). The grey lines frame species which estimated
densities are similar to observations up to one order of magnitude. Insets represent the distribution of
the simulated to observed density ratio (log10(C

Sim
i /CObs

i ) for predator species, and log10(R
Sim
k /RObs

k ) for prey
species), all seasons and species groups combined.

A close–up on comparisons of species abundances between seasons (spring versus autumn for preda-

tors; spring versus summer for prey) highlights that simulations preserve the overall trend to higher
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post–breeding biomasses (Fig. 6). Yet, seasonal variation of species biomasses can be strongly over-

estimated for some prey species (see symbols above the top grey line in Fig. 6C–D). But for most

species at both trophic levels, the breeding season increase seems slightly underestimated. There

are even a handful of cases where predator biomasses decrease slightly during the breeding season

in the simulations (see symbols under the black line in Fig. 6A–B). In addition, the functional

response and the estimating method of gi mostly affect predictions for predator seasonal growth by

reducing their post–breeding biomasses (Fig. 6A–B).
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Figure 6: Seasonal variation of species densities. A–B) compare spring densities (when t − btc = 0) with
autumn densities (when t − btc = 0.5) for predators while C–D) compare spring densities with summer
densities (when t−btc = 0.25) for prey species. The identity of compared seasons is constrained by the data
available to us. Observed biomass densities are plotted in blue, and simulated densities (seasonal densities
averaged over 10 years) with grey (ĝi based on eq. 22) and black symbols (ĝi based on eq. 21). The black
diagonals indicate equal densities between seasons. The grey lines frame seasonal variation within one order
of magnitude.

We further quantify model fit with squared deviations to observed biomass values for each species

(Fig. 7A–C). First, the estimation method for predator density–dependent mortality (gi) affects

predator abundance less ambiguously than the abundance of prey species. Contrary to expectations,

estimating gi with observed predator growth during the breeding season ((gi)Data in Fig. 7) tends

to decrease model accuracy. Second, differences in species squared deviations between methods
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for estimating predator density–dependent mortalities gi are more important when deviations are

small (mostly for predator species). Meanwhile, when species biomasses are poorly predicted (high

squared deviations), they are not improved by variants of the model or the estimating method of

gi. Thus, large deviations are mostly due to a lack of empirical knowledge and not a pitfall of either

method for estimating gi. Finally, shaping predation with a type II functional response does not

improve the match between simulated and observed densities.

Overall, our parameterisation results in species abundance distributions (SADs) which are very

similar to the observed SADs, displaying little variation in shape between seasons (Fig. 7B–D).

This is especially true for predators (top lines in Fig. 7B–D) while SADs for prey species are

slightly less skewed to lower densities and show truncated tails due to extinctions (bottom lines in

Fig. 7B–D). Despite slight differences in species biomass predictions highlighted above, all model

variants perform similarly in terms of SAD.

33



Figure 7: Comparisons of model–predicted biomasses to observed data in terms of A–C) species squared
errors (solid symbols for predators and open symbols for prey) and B–D) species abundance distributions
for predators (top) and prey species (bottom). Model quality is investigated for both type I (A–B) and type
II (C–D) functional responses, as well as for two types of gi estimates. Green symbols correspond to spring
densities, black symbols to summer densities, and orange symbols to fall densities.

6 Discussion

Building on the extensive empirical studies conducted in the Bia lowieża forest, summarised by

Jȩdrzejewska & Jȩdrzejewski (1998), we have parameterised a dynamic seasonal food web model

with type I and type II functional responses. Our methodology combines information about seasonal
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diets, physiological needs of the predators, life–history characteristics of both prey and predator

species, and observed seasonal fluctuations of densities. The corresponding simulations yielded at

least about 80% persistence of the modelled species, a good score given the entirely additive effects

of predation. We also had a good quantitative match to observed biomasses, for the most part

much below one order of magnitude, despite some seasonal variation in accuracy. Yet, there seems

to be a trade–off between improving species persistence and improving the quantitative match to

the observed biomasses. We explore these results and their implications in more detail below; we

start with technical considerations regarding this parameterisation exercise before moving to more

ecological considerations aimed at improving seasonal food web modelling more generally.

6.1 Trade–off between improving species persistence and model accuracy

In our attempt to parameterise the seasonal food web of the Bia lowieża forest, we considered two

methods for estimating the predator density–dependent mortality coefficient gi. One was based on

the theoretical maximum intakes and densities of the predators, and the other based on observed

growth rates and densities. We also considered two variants of the predators functional response

(Holling types I and II). Both choices affect predator intrinsic growth and their impact on prey

populations. Therefore, we expected that model variants could have very different persistence levels

and model accuracy (i.e., distance between observed and predicted biomasses).

Estimates of predator density–dependent mortality rates based on observed growth rates resulted

in greater persistence but also larger differences between simulated and observed seasonal densities,

at both trophic levels. In other words, model accuracy for persisting species traded off with species

persistence. Greater persistence is easily explained as this method produces higher estimates of

predator density–dependent mortality rates (Fig. 3E) indirectly decreasing predatory pressure on
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prey populations through reduced predator populations. Yet, although using observational data

for estimating gi could be thought to produce more life–like biomass densities (and perhaps some

overfitting), it actually increased squared deviations for predators. We further discuss predator

regulation in sections 6.3 (competition for territories) and 6.4 (intra–guild predation).

A saturating functional response caps predator foraging capacity, usually helping prey populations

to maintain at higher densities. We dismissed S–shaped functional responses because of potential

artefacts induced by their use for large food webs (Morozov & Petrovskii, 2013) to opt for a simpler

type II functional response (consistent with Jȩdrzejewska & Jȩdrzejewski, 1998). Greater model

accuracy was expected with the type II functional response, while overestimated consumption

for abundant prey species was likely with the type I response. Rather, simulations produced lower

persistence for the prey community while simulated species biomasses were not uniformly improved.

One possible lead to explain these results lies in the parameterisation of the discovery rates: under

the assumption of a type II functional response, estimated discovery rates for a given consumption

rate are larger. Another possibility is that the cap on predator foraging rates introduce slight

delays in predator population build–up, which eventually causes prey to suffer more predation

later on, and persistence to decrease overall. A sensitivity analysis examining to what extent the

model dynamical outcomes can be modified in response to changes in empirical abundance data

(see eq. 6 and 16) highlights that the type II functional response decreases model sensitivity to

abundance data. Hence, although the type II functional response may seem to fit a little less well to

observational data, describing predation with a saturating functional response limits the potentially

detrimental effect of sampling errors and uncertainties on food web parameterisation (Supporting

Information E). However, one should keep in mind that the differences between our model variants

are relatively small and should not be overinterpreted.

36



6.2 Mimicking annual cycles

Our parameterised food web model generates annual cycles, throughout which the model repro-

duces fairly well spring biomasses but a little less well summer and fall biomasses. In other words,

despite the seasonal forcing that we implemented, our model does not fully account for the pro-

cesses occurring during the breeding season. Because of the energy requirements for reproduction,

breeding often coincides with greater food availability (Jönsson et al., 1998). Following Rinaldi

et al. (1993), we have thus considered a prey intrinsic growth rate that fluctuates seasonally while

assuming that intra–specific competition remains constant. Yet, it is possible that several prey

parameters fluctuate seasonally. Indeed, plant growth and fruiting, as well as insect emergence

occur periodically following temperature trends, and affect directly the food stocks available to

herbivores and insectivores (Humphries et al., 2017). Eventually, greater resource stocks for prey

could correspond not only to an increased maximal growth but also a greater prey carrying capacity

in summer, both of which could combine to massively decrease the intra–specific competition in

summer. Seasonally fluctuating prey competition is therefore one possible improvement for this

model framework.

Another source of seasonal fluctuation in the empirical version of this food web relative to its theo-

retical idealisation is migration: many prey species of this food web migrate (mostly insectivorous

birds). In the present work, we take into account the absence of these birds with a seasonal forc-

ing on predation so that it is interrupted in winter. Yet, springtime immigration provides a great

increase in overall biomass in the forest (Jȩdrzejewska & Jȩdrzejewski, 1998). If the predator has a

strong numerical response, sudden prey availability is expected to boost predation at the expense

of resident prey sharing the same predator (e.g. wood warblers competiting with rodents; Gren-

delmeier et al., 2018), and to magnify this apparent competition which already occurs in our model.
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However, modelling the actual biomass upsurge in the spring could also enable apparent mutualism,

provided that predators respond to prey availability by switching or have weak numerical response

(Holt & Bonsall, 2017). It is thus difficult to predict how implementing a more realistic seasonal

migration would affect the dynamics of the community.

6.3 Multi–annual dynamics

Many species of the modelled food web are known to display multi–annual dynamics (commonly

3 to 5–year cycles), with shrews and voles being the most well–known cases (Pucek et al., 1993;

Stenseth et al., 2002). Models such as ours are susceptible to produce limit cycles or chaotic

attractors when unforced (Bazykin, 1998) and periodic forcing can create or enhance multi–annual

cycles (e.g., Rinaldi et al., 1993; Taylor et al., 2013). Although the “right ingredients” for multi–

annual cycles in predator–prey systems are gathered in our parameterised model (high prey growth

rates, saturating functional responses in the type II case, periodic forcing for prey growth), none

of the modelled species had multiannual dynamics in our simulations. Therefore, the predation

hypothesis, whereby some strongly cyclic species oscillate because of predators, and also drag many

other species with them through shared predation (e.g., Kjellander & Nordström, 2003; Korpimäki

et al., 2005), could seem unlikely on its own.

Although predation may not explain the observed multi–annual dynamics of some species like

rodents, a contributing factor to the relative stability of the community dynamics may be our

choice of Bazykin’s model for predator self–regulation, that is, a quadratic mortality term (Bazykin,

1998). With our empirically–based parameterisation with strong predator self–regulation, limit

cycles would be rare in the absence of seasonal forcing (Metzler & Wischniewsky, 1985). It is

therefore logical that multi–annual cycles do not appear here: even with the seasonal forcing exciting
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the dynamical system, there is too much dampening of the predator growth rate. Alternative

formulations of self–regulation that model territory size as inversely proportional to prey density

can produce multi–annual cycles when seasonally forced (Turchin & Hanski, 1997), but whether

they do so more often than the Bazykin form depends on parameter ranges (Turchin & Batzli,

2001). It is also unclear how to formulate them for multiple species of predators and prey. Hence,

while the modelling of predator territoriality could be improved somewhat, Bazykin’s formulation

provides a suitable first approximation. Self–regulation of predators, through territoriality or other

means, is quite likely both generating persistence (as in other food webs, Barabás et al., 2017) and

dampening fluctuations in this system.

An alternative – though not mutually exclusive – explanation for the absence of multi–annual

cycles in this system may be that they are largely driven by mechanisms that are not currently

implemented in the models. Other sources of forcing, at the multi–annual rather than seasonal scale,

also prevail in the forest. For instance, some prey intrinsic growth rates are themselves fluctuating

over several years, due to fluctuations in resources such as seeds (e.g, McShea, 2000) due to tree

masting (oak, hornbeam, maple, and spruce), or Lepidoptera (e.g., Ludwik & Weso lowski, 1996).

It may provide yet another “push” for the food web model to start oscillating. However, it is

possible that the high level of predator regulation in our model actually precludes such multi–

annual oscillations, even with more temporal forcing. Moreover, stage–structure, which we entirely

neglected here, is known to likely cause the majority of short–period population cycles (Murdoch

et al., 2002), possibly in interaction with predation. It is therefore another potential direction for

model improvement.
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6.4 Food web structure

Two additional simplifying features of our model, that pertain to the structure of the network, are

that: (1) it considers a bipartite web and (2) it assumes well–mixed populations in a homogeneous

environment. Given these two simplifying assumptions, and the ones mentioned in the previous

section, we find remarkable that the model manages to mimic most of the essential features of this

forest food web. But relaxing these assumptions may lead to better prediction, especially for the

species that are currently less well modelled (either too abundant or extinct in our simulations).

The main implication of a bipartite predator–prey web is to forbid omnivory within a guild while

this is widespread at upper trophic levels (Thompson et al., 2007). According to Jȩdrzejewska

& Jȩdrzejewski (1998), intraguild predation in the Bia lowieża forest may occur through actual

hunting of smaller taxa by larger ones such as raptors preying on mustelids (e.g., Korpimäki &

Norrdahl, 1989; Zub et al., 2008) or mustelids consuming raptors’ eggs or juveniles. Omnivory

also includes interference competition by which dominant predators kill their competitors (e.g.,

lynxes killing foxes, Sunde et al., 1999), and possibly consume them. Yet, it is difficult to identify

whether empirically found intra–guild links correspond to actual predation and affect the victim’s

population when using data based on scats and pellets: overestimating omnivory is possible as other

predators’ presence in another diet may be simply the trace of scavenging behaviour (Jȩdrzejewska

& Jȩdrzejewski, 1998). Still, a more accurate modelling of omnivory could enable a more realistic

predation regulation and possibly alleviate limitations of our model (Rudolf, 2007a,b).

Another important simplification pertains to space and the arrangements of habitats. Although

most of the Bia lowieża forest is obviously covered by woodland, this study site comprises very diverse

forest habitats (e.g., oak–lime–hornbeam forest, mixed spruce–oak–pine forest, pure coniferous)

as well as open marshes, clearings, artificial lakes and rivers. The latter habitats host distinct
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prey populations which locally thrive while they are rarer elsewhere in the Bia lowieża forest (e.g.,

hares, some microtine species, marsh birds, fish). Interestingly, these species are actually those

that we fail to model, as they go extinct while they have life–history parameters that usually

allow for clear persistence in their preferred habitats. Indeed, assuming well–mixed populations

in homogeneous habitats forces to consider population densities averaged over the whole study

area, which underestimated prey carrying capacities (overestimated prey competition rates) for

these open–habitat species. This makes them more extinction–prone that they actually are. In

addition, their predators may either occupy forest ecotones, splitting their foraging effort between

the prey communities occupying different habitats (e.g., long–eared owls and red foxes). Ignoring

this spatial distribution of predator–prey interactions likely overestimates discovery rates of these

prey species as their densities are low at the scale of the whole Bia lowieża forest but not at the

scale of their predator’s hunting territories. Therefore, a spatially differentiated model (i.e., with

several habitats) may allow greater persistence still for these open–habitat prey species.

6.5 Conclusion and perspectives

Using a richly studied predator–prey vertebrate community, the Bia lowieża forest food web, we

parameterised a fully dynamic seasonal food web model. Numerical integration of this model

allowed to reproduce the observed biomasses, their seasonal changes, and the species abundance

distributions. The model predicted dynamics of annual periodicity for the whole community, which

mimicks the seasonal rythms observed in the forest. Although some aspects of model structure

can be improved in future work (territoriality, migration, spatial structure, omnivory), we showed

that it is possible to use seasonal descriptions of diet and biomasses, combined with life–history

data, to parameterise a differential equations model with time–varying parameters. In that sense, we
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extend the work on seasonal predator–prey modules (e.g., Turchin & Hanski, 1997; Gilg et al., 2003)

to the food web scale. A similar methodology may be applied to other well–studied ecosystems

ranging from boreal forests (e.g., the Kluane National Park and Reserve; Krebs et al., 2001) to

African savannas (e.g., the Serengeti National Park; Sinclair & Arcese, 1995) where the specifics of

seasonality may vary.

Overall, as food web studies are moving beyond a frozen picture of ecological communities (e.g.,

Saavedra et al., 2016; Ushio et al., 2018), parameterised seasonal food-web models enable in sil-

ico tests of the contribution of environmental fluctuations to community structure (e.g., Mellard

et al., 2019) and dynamics. In the long run, modelling seasonal food webs should allow to better

understand how alterations of seasonal rythms may affect long–term dynamics and community

structure.
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